Introduction:
Alrefai, W. A. & Gill, R. K. (2007) Bile acid transporters:
Structure, function, regulation and pathophysiological implications. Pharmaceutical
Research. 24 (10), 1803-1823.
Zhang, E., Phelps, M., Cheng, C., Ekins, S. & Swaan, P. (2002)
Modeling of active transport systems. Advanced Drug Delivery Reviews. 54
(3), 329-354.
Dawson, P. A., Lan, T. & Rao, A. (2009) Bile acid transporters. Journal
of Lipid Research. 50 (12), 2340-2357.
The Function of ASBT:
Wilson F. (1981) Am. J. Physiol. 241:G83–G92.
The Function of ASBT:
Lewis MC, Brieaddy LE, Root C. Effects of 2164U90 on ileal bile acid
absorption and serum cholesterol in rats and mice. J. Lipid Res. 1995;36:1098–1105
Bhat BG, et al. Inhibition of ileal bile acid transport and reduced
atherosclerosis in apoE-/- mice by SC-435. J. Lipid Res. 2003;44:1614–1621
Hallen S, Bjorquist A, Ostlund-Lindqvist AM, Sachs G.
Identification of a region of the ileal-type sodium/bile acid cotransporter
interacting with a competitive bile acid transport inhibitor. Biochemistry. 2002;41:14916–14924.
Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10.
Pflugers Arch. 2004;447:566–570.
Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and
characterization of the hamster ileal sodium-dependent bile acid transporter. J.
Biol. Chem. 1994;269:1340–1347.
Weinman SA, Carruth MW, Dawson PA. Bile acid uptake via the human
apical sodium-bile acid cotransporter is electrogenic. J. Biol. Chem. 1998;273:34691–34695
Kramer W, Wess G. Bile acid transport systems as pharmaceutical
targets. Eur. J. Clin. Invest. 1996;26:715–732.
Geyer J, Wilke T, Petzinger E. The solute carrier family
SLC10: more than a family of bile acid transporters regarding function and
phylogenetic relationships. Naunyn Schmiedebergs Arch.
Pharmacol. 2006;372:413–431.
Zheng X, Ekins S, Raufman JP, Polli JE. Computational models
for drug inhibition of the human apical sodium-dependent bile acid transporter.
Mol. Pharm. 2009;6:1591–1603.
Hussainzada N, Banerjee A, Swaan PW. Transmembrane domain VII of the
human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the
substrate translocation pathway. Mol. Pharmacol. 2006;70:1565–1574.
Jardetzky O. Simple allosteric model for membrane pumps. Nature.
1966;211:969–970
Padan E. The enlightening encounter between structure and function
in the NhaA Na+-H+ antiporter. Trends Biochem. Sci. 2008;33:435–443.
Appel M, Hizlan D, Vinothkumar KR, Ziegler C, Kuhlbrandt W.
Conformations of NhaA, the Na+/H+ exchanger from Escherichia coli, in the
pH-activated and ion-translocating states. J. Mol. Biol. 2009;388:659–672.
Tzubery T, Rimon A, Padan E. Structure-based functional
study reveals multiple roles of transmembrane segment IX and loop VIII-IX in
NhaA Na+/H+ antiporter of Escherichia coli at
physiological pH. J. Biol. Chem. 2008;283:15975–15987.
Wilson F. (1981) Am. J. Physiol. 241:G83–G92.
Wilson F. A. (1991)
in Handbook of Physiology: The Gastrointestinal System IV, eds Schultz T.,
Stanley S. (Waverly Press, Baltimore, MD), pp 389–404.
Wehner F. (1993)
Eur. J. Physiol. 424:145–151.
The Structure of ASBT:
1.
Boudker, O.
& Verdon, G. Structural perspectives on secondary active transporters. Trends
Pharmacol. Sci. 31,418–426 (2010)
2.
Hunte, C. et
al. Structure of a Na+/H+ antiporter and insights
into mechanism of action and regulation by pH. Nature 435,
1197–1202 (2005)
3.
Olkhova, E.,
Hunte, C., Screpanti, E., Padan, E. & Michel, H. Multiconformation
continuum electrostatics analysis of the NhaA Na+/H+
antiporter of Escherichia coli with functional implications.
Proc. Natl Acad.
Sci. USA 103, 2629–2634 (2006)
4.
Jardetzky,
O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)
5.
Hu, N., Iwata, S., Cameron,
A. D. & Drew, D. (2011) Crystal structure of a bacterial homologue of the
bile acid sodium symporter ASBT. Nature. 478 (7369), . [main text]
No comments:
Post a Comment