Further Info & References.


Introduction:
Alrefai, W. A. & Gill, R. K. (2007) Bile acid transporters: Structure, function, regulation and pathophysiological implications. Pharmaceutical Research. 24 (10), 1803-1823.
Zhang, E., Phelps, M., Cheng, C., Ekins, S. & Swaan, P. (2002) Modeling of active transport systems. Advanced Drug Delivery Reviews. 54 (3), 329-354.
Dawson, P. A., Lan, T. & Rao, A. (2009) Bile acid transporters. Journal of Lipid Research. 50 (12), 2340-2357. 

The Function of ASBT:



 Lewis MC, Brieaddy LE, Root C. Effects of 2164U90 on ileal bile acid absorption and serum cholesterol in rats and mice. J. Lipid Res. 1995;36:1098–1105



Bhat BG, et al. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. J. Lipid Res. 2003;44:1614–1621



 Hallen S, Bjorquist A, Ostlund-Lindqvist AM, Sachs G. Identification of a region of the ileal-type sodium/bile acid cotransporter interacting with a competitive bile acid transport inhibitor. Biochemistry. 2002;41:14916–14924. 



 Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch. 2004;447:566–570.



 Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 1994;269:1340–1347.



 Weinman SA, Carruth MW, Dawson PA. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J. Biol. Chem. 1998;273:34691–34695



 Kramer W, Wess G. Bile acid transport systems as pharmaceutical targets. Eur. J. Clin. Invest. 1996;26:715–732.



 Geyer J, Wilke T, Petzinger E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch. Pharmacol. 2006;372:413–431. 



 Zheng X, Ekins S, Raufman JP, Polli JE. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol. Pharm. 2009;6:1591–1603.



 Hussainzada N, Banerjee A, Swaan PW. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway. Mol. Pharmacol. 2006;70:1565–1574.



 Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966;211:969–970



 Padan E. The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter. Trends Biochem. Sci. 2008;33:435–443.



 Appel M, Hizlan D, Vinothkumar KR, Ziegler C, Kuhlbrandt W. Conformations of NhaA, the Na+/H+ exchanger from Escherichia coli, in the pH-activated and ion-translocating states. J. Mol. Biol. 2009;388:659–672.



 Tzubery T, Rimon A, Padan E. Structure-based functional study reveals multiple roles of transmembrane segment IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH. J. Biol. Chem. 2008;283:15975–15987.

Wilson F. (1981) Am. J. Physiol. 241:G83–G92.
     Wilson F. A. (1991) in Handbook of Physiology: The Gastrointestinal System IV, eds Schultz T., Stanley S. (Waverly Press, Baltimore, MD), pp 389–404.
 Wehner F. (1993) Eur. J. Physiol. 424:145–151.


 


The Structure of ASBT:
1.     Boudker, O. & Verdon, G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci. 31,418–426 (2010)
2.     Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005)
3.     Olkhova, E., Hunte, C., Screpanti, E., Padan, E. & Michel, H. Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications.
Proc. Natl Acad. Sci. USA 103, 2629–2634 (2006)
4.     Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966)
5.     Hu, N., Iwata, S., Cameron, A. D. & Drew, D. (2011) Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature. 478 (7369), . [main text]



No comments:

Post a Comment